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DATA TRANSFORMATIONS IN REGRESSION ANALYSIS WITH APPLICATIONS TO STOCK - RECRUTTMENT
RELATIONSHIPS
David Ruppert
and
Rayrmond J. Carroll
Department of Statistics

. University of North Carolina
Chapel Hill, NC 27514/USA

Abstract

W progese & mthadolegy for fitiing theoreticel models to Gata. The dependent
variable (or response) and the model are transformed in the same way. Two types of
transformations, power transiormatilor and weighting, are used together to ramove
skewness and to induce constant variance. Our method is applied to the stock-~
recruitment data of four fish stocks. Alsc discussed are estimates of the
conditional mean and the conditional quantiles of the original response.

1. Introduction

In regression analysis one seeks to establish a relationship between a response
y and independent variables x = (xl,...,xk)'. Often the physical or biological
system generating the data suggest that in the absense of random error y = f(x,8)
where f is a known function and @ is an unknown parameter. In reality random
variability, modeling errors, and measurement errors will cause y to deviate fram
f(x,8).

Usually 8 is estimaied by the (possitly nonlinear) least-squares estimator é
which minimizes

, 52
(¥, - £0x,,8))

>z

cr
P~

where Yt and ’—‘t = (xlt""'xkt) ! are the t-th observations of the response and the

independent variables, t=1,...,N. The method of least squares is not uniquely
determined in the following sense. If h(y) is a monotonic function then y = £(x,8)
implies that h(y) = h(f(x,0)). In the absense of random error, there is an infinity
of possible models, one for each h. Teking h(y) to be the new dependent Yariable
and h(f(x,8)) to be the new regression model, the least-squares estimate 8(h),

depending cn b, minindzes
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hiy,) = h(E(x, 8017 .

I
=

This paper addresses the question "how should h be chosen?” In the past h was
often chosen so that the model was linear in the parameters, but with the wide
availability of nonlinear-least squares software linearization is no longer
necessary. Instead h should be selected so that a(h) has high statistical
efficiency in same sense, say low asymptotic mean square error. For nonlinear
models finite-sanple mean square errors are seldom known and large-sample, or
asymptotic, mean square errors must be used.

Least-squares estimation is asymptotically efficient when the errors are
additive, normally distributed, and hamoscedastic, that is, if

yt = f(}_trg) + et ’ (1)
where el,...,eN are independent N(O,c»z) random variables for scame 0-2 > 0. If (1)
fails to hold for the original response and model, it may hold after these have been
transformed. For example, if the errors are multiplicative and lognormal, then

logly;) = 1og(f()_ct,§)) + €.

so that h(y) = log(y) is the appropriate transformation.
In general, it is impossible to know a priori how the random errors atfect y.
It is, however, often reasonable to assume as an approximation that for an unknown h

= 2
h(yt) = h(f(gt,g)) + Gt and Gt -~ N(O,07),

ard then to estimate h fram the data.

Carroll and Ruppert (1984) introduced a methodology where h is assumed to
belong to a parametric class such as the class of power functions. Specifically, '
h(y) = h(y,)\) where h(y,)\) is a known parametric family and )\ is an unknown
parameter, Then 8, o, and )\ are estimated simultaneously, for example by maximum
likelihood.

Box and Cox (1964) used a modified power transformation family

y()‘) = (y)‘-l)/\ W0
= log(y) =0,

which includes the log transformation in a natural, i.e., continuove, fashion. 1t ‘
should be mentioned that Box and Cox were concerned with a quite different i

transformation methodology. They transform only the response, not the model; see l
Carroll and Ruppert (1984).
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another transformation family which, as we will see, is useful in stock-

recruitinent analysis is division by (ut)cx where u, is a known constant and @ is an
unknown parameter. Since u, is a constant which does not depend on Ypr @

W was ! transformation of this kind has no effect on skewness but it induces

g . ' hamoscedasticity if (ut)(x is the standard deviation of Yy The constant u, can be
{ one of the independent variables, a variable not depending on X, ory,ora
function of such variables. Division by (ut)a will be called a "power weighting

. ‘ transformation”. Note that u: denotes ordinary, not Box-Cox, power transformation
:‘ = 1 when « = 0.

&’ This paper is restricted to a model cambining a Bax~Cox power transformation

1 with a power weighting transformation:

of u, so that u

(\) & _ (N X
Ye / ue =1 70(x, ,8)/uf + €. (2)

o » However, the methodology that is developed here can be applied to other
T (1) . transformation families.

According by model (2), y
f()\)

é’\’ is symetrically distributed about £N(x,,0).

R (x,/9) gives both the conditional (given x;) mean and median of y(M.
g This implies further that the untransformed model f(gt,g) gives the conditional
j:, median of the untransformed response Yo However, the conditional mean of Ye is not
% fix,,8) except if )\ = 1. The conditional mean is discussed below. We see then
that: f(;t,g) has two interpretations; it gives the value of yt if there is no errur,

Therefore,

»
L —— ——

s v, and otherwise it gives the conditional median of Yy+
S , In our exarples, x, = X;, is the size of a spawning stock S, and the response
X : Y, is the total return R . Commonly used model functions f(x,8) include the Ricker
B é (1954) model
b1
2] .
: R, = S, exp(8; + 8, S,) , (3)
N, ‘
5 ., and the Beverton-Holt (1957) model
3 “imum Rt = 1/(91 + 92/st)‘ 4)
i . We will let u, = X,. Then (3) can be transformed to
1
R./S, = exp(; + 8, S,) (5)
[ by letting =1 and &=l. By using \=0 and &=C on (5), one obtains
s‘ it
' R = (6)
log(R./s5,) = 8, + 8, 8,,
. See
»
(]
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Equatior (6) is often favored since it is linear in the parameters,
Equation (4) can be linearized to

1‘/Rt = 61 + 92 (l/St) (N
or

S,/R =6, +8

Re =8+ 8 S {8)

corresponding to \=-1 and «x=0 and )\-1 and x=-1, respectively.

By estimating \ and « we can tell when these linearizing transformations are
appropriate for a given set of data, and we can find more suitable transformations
when the linearization is not appropriate.

Althcugh we advocat2 transfoniny the response to achieve an error structure
where least-squares is efficient, often one must estimate characteristics (such as
+ma condivlenal aean) of the original response. In sectica 5 sstimates of the

conditicnal mean and the conditionral quantiles of Ye given x_ are presented.

t

2. Power transformations, skewness, and heteroscedasticity

In this section, we discuss how power transformations affect, and in particular
remove, skewness and heteroscedasticity. Suppose that the random variable Ye has

mean m and -ariance o—i = g(mt); the same function g applies for each t. If Y is

t
transformed to h(yt), then by a Taylor approximation as in Bartlett (1947), the
variance of h(yt) is

E(h(yt) - E h(yt__))2 =

E(h(yt) - h(mt))2

o 2 _ 2 )
—(h(mt)) E(yt mt} .

= (k"t(mt))2 g(mt)
where l.u(y) = d/dt h(y). The variance of h(yt) is approximately constant if l;(y) is
proportional to g’*(y). :
In many cases g is a power function. For example, g(m) = m for Poisson-
distributed data and g(m) is proporticn to m2 if the coefficient of variation (CV)
is constant, Also, gim) = m2 for exponentially distributed data. When
gim « m2 N then him) « g’* (m) if h(y) = y()‘). In the case )\ = 0 (constant
Cv), the log transformation stabilizes the variance, and for Poisson data )\ = 1/2,
the square-root transformation is indicated,
The effect of h on skewness is also revealed by h Suppose that y is
positively skewed., The extended right tail in the distribution of y is reduced
through transformation to h(y) if large values of y are "compressed together™ more
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than small values; more precisely, if for all A\ > 0O, lk}(yfg) - h(yl)] < lh(y2+_/_\)
- h(yz)l whenever ¥y > ¥y Such campression occurs if h(y) is a decreasing
function, in which case h is called concave.

When h{y) is a Box-Cax power transformation then r.m(y) = (d/dy) \-l(y)‘-l) when
W0 or l:x(y) = (d/dv) log y when \ = 0. In either case, gx(y) = y\—l, and
consequently h is concave if \ < 1. Box-Cox transformations reduce right-skewnese
when )\ < 1 and the amount of reduction increases as )\ decreases.

Left skewness if reduced by transformations that are convex, that is, which
have an increasing derivative. If )\ > 1, then y()‘) is convex.

3. Simultanecus power transformation and weighting by maximum likelihood.

Althouch power transformations can reduce both skewness ard heteroscedasticity,
the value of )\ irducing normality, or at least a reasonably symmetric distribution,
need not be the same )\ which trarnsforms o constant variance. A more flexible
approach to modeling cambines a Bax~Cox power transformation to normality with a
power weighting transformation to hamoscedasticity as in eguation (2). In this
section we discuss the estimation of )\, a, 8, and o by maximum likelihood and the
construction of a confidence region for \ and &« by likelihood-ratio testing.

To find the likelihood, we first note that the density of Gt is

2T ot exp-€2/(2 021

O

and the Jacobian of et > Y,

is yt—l/u:. Therefore, the conditional density of
Y, given X and u, 1s
f(yt‘xt,utley&,q')\) =

2,4 N1, « o) e 2 2 2a
(2T] &7 (v} /ug) expl-ly, £ (%, 817/(2 0% v,

If X, and u, are fixed oconstants, not depending on YyreeeoYe yr then the log-
likelihood of Yyreeer¥y is

L0\ ,8,02) = -N/2 1log(2]] &)

N N
+ O-1) \L log(y,) - « z_ log (u,)
t=1 £=1
N
- (/2 o2 Z_ N - £V (001200
£=1

1f x, and u, depend on previous values of y, then L{)\,&,8,02) is still the
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conditional log-likelihood of y) /...,y given X;,X,,X ,,... and UysUgeU_g4... o and
maximization of L(x,a:,e,o-?') should still produce good estimates of \,cx,e,o-z. The
distinction between conditional and unconditional estimates fram time series data is
discussed in Box and Jenkins (1976, Chapter 7). The dependence of X and u, on past
y may, however, produce biases. Walters (1985) found sizeable biases in a Monte
Carlo study with small sample sizes, N = 10, His study assumed that )\ was known
and equal to 0. His formulas show that the bias should decrease as N increases.

Following Box and Cox (1964), we maximize L(\,x,8,0-2) in two stages. First,
for fixed ) and o the MLE of @ is the nonlinear, weighted least-squares estimator
8(\,x) which minimizes

N

{ )
SSOh,«,8) = 2_ N - e 0120

=1
and the ME of o2 is o2(h,&) = N * 8S(\,&, 8(\,x)). Define
Lm(\,ct) = L\, x, 8(\,x), &()\,x))

to be the log-likelihood maximized with respect to 8 and o for fixed )\ and x. An
appruximate MIE is fcund by cnmpating me()\&x) on a grid; in section 4 we use
x = -1(.25)1 and \ = -1(.25)1. If the exact MLE is needed then me()\,a:) can be
maximized by a numerical optimization technique using the approximate MLE as an
initial value. However, an exact MLE is probably unnecessary for most applications.
The function Lm(\,tx) can be used to test hypotheses and to construct
confidence regions for (\,x). For a given null value ( )\0, x,), one can test HO:
O\, x) = ()\0, cxo) against Hl: O\, x) # ()\0, <Xo) by the likelihood ratio test. The
log-likelihood ratio is

LR()\O, oco) = Lmax()" x) - Lmax()‘o' o:o).

Here (;\, ;:) is the MLE or approximate MLE, HO is rejected at level € if

2 IR(\, &) exceeds X(1, 1-€), the 100(1-€) percentile of the chi-square
distributiocn with one degree of freedom (Rao, 1973, section 6e). This test can be
applied to each value (\0, a,) on the grid, and a 100(1-€) percent confidence
region for (), o) consists of all null values which are not rejected,

4. Examples

4.1 Population A
These data and the population B data discussed later were obtained through

Professor Carl Walters (pers. camn.). Permission to identify the stocks has been
refused by the original source. There are twenty-eight years of data. The
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variables, Rt = total return and St = spawner escapement, are plotted in figure 1.

(number of fish)

\ _Rick
—ean Ricker

Recrunt:

0 10000 20000 30000 40000

Spawners (numbers of fish)

i

.
ua

—

Population A. Actual recruitment from 1940 to 1967,
estimated median recruitment based on the Ricker and
Beverton-Holt (BH) models, and estimated mean recruit-
ment based on the Ricker model.

we first fit the (transformed) Ricker model:
(\) ;X _ (\) ;X
Rt /St = (St exp(Gl + 92 St)) /St + et . (9)

The approximate MLE (on the grid \ = -1(.25)1 and & = =1(.25)1) is (;\, t;) =
(.25,0) and the maximized log-likelihood is -338,3106. With ()\,&) equal to the
MLE, model (9) becames

4 4
R, = /§: exp((8, + 0, S.)/4) + € .

Confidence regions for ()\, &) are given in Table 1. 'The 95% univariate confidence
regions for )\ and « are {0,.25,.5} and {-.25,0,.25,.5,.75}, respectively.
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Lambda Alpha
~.25 0 .25 .5 .75
0 * * *
+ + +
.25 * *x * *
+ + + + +
.5 * * * *
+ +

* = 95% confldence region assuming the Ricker model.

** = MLF assuming the Ricker model.
S

+ = 95% confidence rzgion assuming the Beverton-Heolt model.
~ 2

++ = MLE assuming the Bever+ton-Holt model.

Table 1: Population A. Confidence

1 regions and maximum likelihood estimatas of
lambda and alpha.

Next the transformed Beverton-Holt model
) ;o _ (N
R /S = (1/(6l +6,/5.)} /8, + €

was fit. The MLE is (;\1 <;) = (.25,.25) and the maximum log-likelihood is
=-337.0919. The difference between the maximum log-likelihood for the Beverton-Holt
and Ricker models is only 1.2187 which indicates that both models fit almost as
well, though by this criterion the Beverton-Holt model does provide a siightly
better fit.

The estimated median return, calculated as described in section 5, is plotted
in figure 1 for both the Ricker and Beverton-Holt models, as is the "swearirng
estimate (section 5) of the mean assuming the Ricker model.

A researcher with only linear regression software might be tempted to linearize
both the Ricker and Beverton-Holt models and then to campare them on their !
When the linearized Ricker model

log(Rt/St) = 91 + 92 S,

linearizing scales.

is, fit R2 = 0.207 and the F-value for testing overall significance of the model is

6.79 (p = 0.015). If the linearized Beverton-Holt model

1/ R,

is fit then R? = 0.000549, F = 0.01, p
model

St/Rt

61 + 62/5t

.9058, and if the alternative linearized

92 + 91 Sy
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is fit then R2 = 0.110, F = 0.29, and p = .5950. A researcher camparing these
models only on their linearizing scales might easily be tempted into concluding that
the Ricker model provides a far better fit, On the contrary, we believe that the
Beverton-Holt model is very slightly better fitting, but the log transformation is
vastly superior to the inverse transformation.

It is interesting ta see how well the MLE transformation achieves both
hamoscedasticity and near normality. 1In table 2 the skewness and kurtosis are given
for the three transformed Ricker models:

(I R/S = exp(el + 92 Sy (N\=1, x=l)

(1) log(R) = log(S) + 8, + 8, S (=0, x=0)

1

(1) Yrs VS onis, + 8, 18 (.28, a=D),

17 %

that is, no power Liansfcmmation, log “ransiomation and the MLE, respetiively.

Lambda Alpha Skewness Kurtosis  Spearman
Carrelation

1 1 .99 2.69 .39

0 0 -1.04 1.22 .12

.5 0 ~-.27 -.23 .14

Table 2: Population A. Skewness and kurtosis of residuals and Spearman rank
correlation between the absolute residuals and the predicted values. The Ricker
model was used.

For model (III) both skewness and kurtosis are closest to 0, their theoretical value
under normality. Also in table 2 are the Spearman rank correlations between the
absolute residuals and the fitted values. Since the fitted values are an increasing
function of S, the rank correlation is unchanged if the fitted values are replaced
by S. Clearly, \=0 and \=.25 both transform to near hamoscedasticity where there
is little or no relationship between the mean and variance of R. However, the MLE
\=.25 is preferable to \=0 since )\=0 "overtransforms" to negative skewness.

Normality and hamoscedasticity of the residuals can be checked graphically by a
normal plot of the residuals and a plot of the residuals against the fitted values.
The graphical analysis of residuals should be done routinely for transformation
models as for ordinury regressicn medels. Draper and Smith (19%3) provide an
excellent account of graphical residual analysis. We plotted the residuals fram the
MLE and found no evidence of non-normality or heteroscedasticity. A normal

N R Y Y LY
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prcbability plot of the residuals is roughly linear, though the very slight negative
skewness (table 2) is evident. For these data, a plot of the residuals versus the
predicted values is not easy to interpret; the Ricker and Beverton-Holt curves are
nearly constant over the observed range of S so the predicted values are quite

similar except for those corresponding to the smallest values of S.

4.2 Skeena River sockeye salmon

For this stock, effective escapament (S) and total return (R) are given for
veurs 1940 to 1967 in Ricker and Smith (1975). These data are plotted in figure 2
along with the estimated medians (section 5) for the Ricker and Beverton-Holt
models. Campared with the Population A stock, the Skeena River data show less
pusitive skewness but more heteroscedascicity. Figure 2 shows several particularly
low values of R associated with high wvalues of S but only one particularly high
value. This aey indicate ovarompensation, or it may simply %e due to the nign

variability in R when S is large.

AN
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5 2400 '
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& 1830 4 -
bt 3 Ricker
- ]
£ 4
51200 ~
o 4
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600 -
»
]
N 400 800 1200

Spawners (thousands of fish)

Fig. 2: Skeena River sockeye. Actual recruitment from
1940 to 1967 and estimated median recruitment
based on Beverton-Holt and Ricker models.

The 95% confidence regions and the MLE of (), &) are the same for the Ricker
and Feverton-Holt models and they are given in table 3. The maximum log-likelihoods
fur the Ricker and for the Beverton-Hclt models differ by only 0.164, so there is

little to suggest one model over the other. In particular, the data provide no
strong evidence of overcampensation.
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* = 95% confidence region.
** = MLE

Taple 3: Skeena River sockeye salmon stock. 95% confidence region and maximum

likeiihood estimate assuming either the Ricker or Beverton-Holt model.

Carpared with the Pcpulation A date, ¢he MLE hers resuits n lass

transformation (\ = .75 instead of \ = .25 as oefcore) but more weighting (x = .5
instead of @ = 0 or .25). This is consistent with the observation that the
antransformed Skeena data exhibit little skewness but considerable
heteroscedasticity.

4.3 Pacific Cod, Necate Strait (Walters, et al., 1982)

The twenty-one observations, 1959 to 1979, on this stock are plotted in figure
3 along with predicted medians for two models.

Recruitment is virtually independent of spawning stock except that the two
unusually large recruitments occur when S is rather gsmall. For this reason the
Beverton-Holt model fits poorly. For this stock we will consider the Ricker model
and the power model

With Bax-Cox and weighting transformations the power model becames

6
\) ) ox _ 2,00 ax
Rt /St-(GISt) /St+€t'
Confidence regions for (), «) are given in table 4. The maximum log-likelihood is
~34.9690 and -37.2541 for the power and Ricker models, respectively, and the largg
difference (2.2851) indicates lack-of-fit for the Ricker model.
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Fig. 3: Hecate Stroit Pacific Ced. Acviual vecruitnent
from 1959 to 1979 and estimated median recruit-
ment based on the Power and Ricker models.
Lambda Alpha
-1 =75 -5 =25 0 .25 .5 .75 1
-1 * * * *
-.75 * * * * *
-.5 * % % * * *
-.25 * * * *® * * *
0 * * * * E 1] * *
.25 * * L 2 *% * * *
.5 * ® * 2 * ® *
.75 * " * ok * *
l * * * *

* = 95% Confidence region.
** = MLE or within .1 of maximizing the log-likelihood.

Table 4. Hecate Strait Pacific cod stock. 95% confidence region and maximum
likelihood estimate assuming the power model.
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We can test the Ricker model as follows., The general model

Rt = 523 exp(el + 92 St)

includes the Ricker model (63 = 1) and the power model (82 = () as special cases.
One tests the Ricker model by testing HO: 93 = ] against le 93 # 1. The maximum
log-likelihood is -34.9022 and the log-likelihood maximized subject to the
constraint 63 =1 is =37,2541 (see above). Twice the difference is 4.704 which
exceeds Xz(l, .95) = 3.84, The Ricker model is reject at lewvel .05. By the same
reascning the power model is accepted since 34.9690 - 34.9022 = .0668 is very small.

The 95% confidence region for (), «) assuming the power model is quite large
because {a) there are only 21 data points and, more importantly, (b) the variability
in both sgawning stock and return is small compared to the previously examined
ctocks. The confidence region for the Ricker mdel is even larger, ut this is to
be expected considering the lack of fit.

Fcr the power model, the MLE is (;\, ;) = (0, .5), but the log~-likelihood at

A =.25 and &« = .25 or .S is within 0.1 of the maximum.

4.4 Population B (from Professor Carl Walters,pers. comm.)

Fer this stock, Rt and St vary over a much wider range than for the three
preceding stocks, and it seems preferable to use the return tc spawner ratio, Rt/st'
as the response. A plot of log (Rt/St) against St is rather linear, but most of the
data are bunched together in the range 0 < S, < 300,000 while the remainder are
scattered over 300,000 < St < 3,300,000, so in figure 4 log (R/S) is plotted against
log (S).

The only model studied here is the transformed Ricker model

®R/5) N /7 8T = (expio, + 0, 51N /5T v .
Also the grid « = -1(1/4)1 is replaced by a = -1/4(1/16}1/4 because values of x
far fram 0 fit poorly and lead to convergence problems when 8, and 8, are camputed.
The 95% confidence region for (), «) and the MLE are found in table 5. Clearly,
the confidence region is quite small. Because Rt and St vary over extremely wide
ranges, \ and «x are well determined by the data.

5. Estimating the Conditional Distribution of y

We have seen how to utilize the model
yix) / u‘ix = f()‘)(;_c_i, 8/ u‘; + €

to efficiently estimate 8. The model expresses a transformed response as a function
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of 8, x,, and the normally (or approximately normally) distributed €. Typically
interest centers on the untransformed response Yy In this section it is shown how
to estimate the conditional (given X;) mean of Y; as well as conditional quantiles
such as the median.

hi —
{
1
|
“ - i
i |
4 = i
i
i
3 - -
)
I 1 -
2
E =
7.} »
»
~
< J .
-
e * » A \
£ 1 .
9
2 Ricker !
& .
~ 1 — ¢
= = * » ‘
...o: 4 - ‘l
. !
1
1 *
»
-2 A
1 N ) ]
S 10 1S

Log (Spawners)

Fig. 4: Population B. Estimated median production
ratio based on the Ricker model. Recruits
and spawners are in numbers of fish. The
production ratio and spawners are expressed
in logarithms,

T30
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Lambda Alpha

-4/16 -3/16 -2/16 -1/16 0 1/16 2/16 3/16 4/16

* = in 953% confidence regions

Table 5. Populaticn 3., 953% confidence ragicn assuming the Ricker model R/S =

exp(é)l + 62 S).

Now Gi cannot be exactly normally distributed in most cases, for example when
Yq and f(x, ) are non-negative and \#0. It is better to suppose that ei is nearly
normal but with a bounded range. Fortunately, for present purposes we need not make
any assumption about the {Gi} except that they are independent and identically
distributed.

If y()‘) = X, then the inverse relationship is y = (1 + )\x)l/)‘ if W #0 and
Yy = exp(x) if \ = 0. In what follows we assume that )\ # 0. If )\ = 0, then one
simply replaces (1 + )\x)l/)‘ by exp(x). Using (2) we can express the original
response y; as a function of X0 Yy ei and the parameters ),«,0:

_ (\) x VAN
yi—(1+xf (_)gi._e_)+\uiei) .

With this representation we can study the untransformed Yi- Let F be the
distribution function of €1r veer €y The conditional mean of Y; given X, is

Etylxp = J + \ £V, 0 + N ¥ e @ (10
Let qp be the pth quantile of F, i.e., F(qq) = p. Then the conditional pth quantile
of y; given x; is

v/
qp(yil-’-‘-i’ = {1+ )\ f()‘)(gi, 8) + X\ u? qp}l' \

Duan (1983) has proposed the “smearing estimate" of Fly; I_:gi>:

Lt d O Y RN R R R T S PPN R AR Ry

§ *+ ¥,
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- PN

Py e s™N g, 0+ 5 o e (11)

\/lz

Ely;lx;) =N /.

t=1
-where €t is the t-th residual,

-~

S I3N) -, o«
et- (Yt £ (E'C' _9_)} / Ut -

-

The relationship between (10) and (11) is clear; all parameters are replaced by
their estimates and averaging with respgct to thiz theoretical distribution of €i is
replacing by averaging over the sample el, ceos GV Even if F were known, (9) could
only be evaluated by numerical integration, but (10) does not reguire integration.
This is a distinct advantage of the smearing estimate.

Let <A;p e the p-tn sample guantile of (éi). Then we estimate qp(yilii) by

-~ -

S e (NY - IR VAY
f1+ £ Koo €1+ Ny qp} .

[? I

if

-
qp(}il_}f_i)

=

In the case of the median (p = .5), the residuals should have a median close to 0
and we can replace q 5 by 0. The estimated conditional median is then

miy;, X0 = q g(y; ;)
= N, e =0

As mentioned tefore, in figqure 1 ‘E)(ylgt_i) and ;1(y|_:g) are plotted for Population
A assuming the Ricker model, and fi(y|x) is plotted for the Beverton-Holt model as
well. The mean return is always considerably larger than the median return. This
reflects the considerable positive skewness seen in the actual recruitments and
evident in the MLE of ), ;\= .25.

Because recruitment is so highly variable any realistic management model will
be stochastic, and when a stochastic model is constructed it is vital that the
entire conditional distribution of Rt given St be estimated. This can be done by
estimating conditional quantiles as above. Ruppert, Reish, Deriso, and Carroll
(1985) use a closely related method for estimating conditional quantiles when
constructing a stochastic model of the Atlantic menhaden population. Transformation

of the menhaden stock~recruitment data is discussed further in Carroll and Ruppert
(1984).

Summary and Conclusions

A theoretical mudel relating a response y to independent variables x and
parameters § may not be suitable in its criginal form for least-squares estimation.
This is the case if the response exhibits skewness or nonconstant variance.
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However, if the response and the model function are transformed in the same way,
then the transformed response may be approximately normally distributed with a
nearly constant variance and then least-squares estimation will be efficient.

In this paper we propose combining the Box—-Cox power transformation with
weighting by u:, where CN is a variable not depending on Yt and « is a parameter to
be estimated. Another pos§ibility, one that is not explored nere, is to have U, be
the predicted value f(x;, §). Weighting the untransformed response by lf(ggi, 8 &
is studied in Box and Hill (1974), Pritchard, Downie, and Bacon (1977) and Carroll
and Ruppert (1982).

The Bax-Cox parameter \ and the power weighting parameter & can be estimated
simaltaneously with § and o by maximum likelihood. A confidence region for (\, «)
can be onnstructed by likelihcod--ratio testing.

Four stock-racruitment data sets were analyzed by our transformation
menhodolocy. The original response, return, iz in eavh cise skewed o
neraroscedastic. Cnly for the Pacific cod stock is A=l and «=0, corresponding to
no transformation, in the 95% confidence region. On the other hand )\=0 and x=0,
which is the linesarizing transformation for the Ricker model, is in the 95%
confidence region for all four stocks. Also, the inverse transformation ()\ = -1)
which linearizes the Beverton-Holt is not in the 95% region for any of the four
stocks. If both the Ricker and Beverton-Holt models are linearized, then the Ricker
model will appear better fitting, not because it is necessarily supericr but because
the lug transformation is more suitable than the inverse transformation. There are
examples where )\=-1 is quite suitable, for example the Atlantic menhaden stock
(Carroll and Ruppert, 1984).

After )\ and @ have been estimated by maximum likelihood, the fitted model
should be checked by residual analysis as described in, for example, Draper and
Smith (1981). Maximum likelihood estimatiion is highly sensitive to outlying
observations. Such influential points may be evident fram the residuals. Robust
estimators for our transformation model is an important area for future research.
At present, robust estimation has been studied only for the rather different
methodology where only the response, not the model, is transformed; see Carroll and
Ruppert (1985), Carroll (1980), and Bickel and Doksum (198I).

The model function gives the conditional median of the response, and the
conditional mean and the other conditional gquantiles of the response can be easily
estimated. By estimating conditional quantiles one in effect builds a model of the
skewness and heteroscedasticity in the untransformed response. Such a model is a
crucial part of a realistic stochastic management model of the stock.

We have used four fish stocks as examples of our proposed statistical
methodology, but cur analyses should not be considered definitive. For example, we
did not consider the effects on the Skenna River stock of the 1951-2 rock slide,
changes in exploitation rates, an artifical spawning channel opened in l9§5. or
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interacticns between year classes; see Ricker and Smith (1975). We believe,
however, that power and weighting transformaticns will be equally as useful for more
elaborate models as fcr the basic ones that we have employed for illustrative
purposes.
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